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Abstract. The reversible reactionsA + A 
 C andA + B 
 C are investigated. From the
exact Langevin equations describing our model, we set up a systematic approximation scheme to
compute the approach of the density ofC particles to its equilibrium value. We show that for a
sufficiently long timet , this approach takes the form of a power lawAt−d/2, for any dimensiond.
The amplitudeA is also computed exactly, but is expected to be model dependent. For uncorrelated
initial conditions, theC density turns out to be a monotonic time function. The cases of correlated
initial conditions and unequal diffusion constants are investigated as well. In the former, correlations
may break the monotonicity of the density or in some special cases they may change the long time
behaviour. For the latter, the power law remains valid, only the amplitude changes, even in the
extreme case of immobileC particles. We also consider the case of segregated initial condition for
which a reaction front is observed, and confirm that its width is governed by mean-field exponent
in any dimension.

1. Introduction

During the last two decades, diffusion-limited chemical reactions have attracted considerable
interest. In particular, the one- and two-species annihilation reactionsA + A → C and
A + B → C are known to exhibit anomalous kinetics in lower dimension. For the one-
species case, the upper critical dimension—the dimension above which the rate equation
ṅa(t) = −kn2

a(t) (wherena(t) is the concentration ofA particles) gives qualitatively correct
results—is two [1–5]. For the two-species case, the situation is more complex, because of the
presence of a conserved quantity, namely the difference concentration ofA andB particles.
Depending on the initial conditions, the upper-critical dimension is four (for homogeneous
conditions with the same initial concentration of both particle types) or two (for segregated
initial conditions or non-equal initialA andB concentration, etc) [1, 6–9]. Among other
methods, those results have been derived using renormalization group techniques, drawing a
rather complete picture of the different universality classes involved in these reactions [4,5,8,9].

In this paper, the question we want to address is the following: what happens if the
backward decombination reaction is allowed with a given probability? In most physically
interesting systems it is unlikely that this possibility is totally forbidden. Although for
extremely small backward probability, one expects the effects to be very small (and even
unnoticeable for not too large observation time), a fundamental change occurs in the system.
Instead of decreasing toward a non-equilibrium steady state, the system should eventually
reach an equilibrium state. Moreover a new conserved quantity can be constructed reflecting
the conservation of mass or energy:na(t) + 2nc(t) for the one-species reversible reaction
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A +A
 C andna(t) + nb(t) + 2nc(t) for the two-species reactionA + B 
 C (wherenb(t)
andnc(t) are respectively theB andC particles concentration).

At the mean-field level, the rate equations give an exponential approach toward the
equilibrium state. However it was soon recognized [10–13] that the conserved quantity obeys
a diffusion equation, and thus its initial fluctuations should decay with a power law:t−d/2

(d is the dimension of the system). In the long time limit, this power will always overcome
the exponentially fast decay of the rate equations, forany dimensiond > 0. The upper
critical dimension is thus infinity. Although, at first sight this may seem surprising, this
result has been confirmed in various ways. For the single-species reaction, Zeldovich and
Ovchinnikov [11] obtained the approach to equilibrium in the low density limit of a field
theory in three dimensions. This result was extended later [13] for arbitrary dimensions, but
in the framework of an uncontrolled approximation. In theA + B 
 C case, the power
law decay was first obtained in three dimensions [10] from heuristic considerations. Later
Kang and Redner [12], using an argument based on the fluctuations, and Burlastkyet al [13],
assuming a closure of the hierarchy, extended this result to arbitrary dimensions, but with
different amplitudes. Our purpose in this paper is to derive, using field theory techniques and
Langevin equations, the asymptotic approach to equilibrium in a controlled and exact way.
Whereas we are able to show the universality of the power law exponent, the amplitude proves
to be model-dependent.

The paper is organized as follows. In section 2 we consider the single-speciesA+A
 C

reaction. From the master equation describing our model, we map the problem to a set of two
Langevin equations for the random variablesa andc, with complex noise. The concentrations
na(t) andnc(t) are then given by the average of the random variablesa andc over the noise:
na = 〈a〉 andnc = 〈c〉. Exploiting the fact thatna(t) + 2nc(t) is conserved by the dynamics,
i.e. thata + 2c obeys a noisy diffusion equation, we can write down the long time behaviour
of its two-point correlation:

〈(a + 2c)2〉 − 〈a + 2c〉2 ∼ (c∞ − c0)(8πDt)
−d/2 (1)

(c∞ is the steady-state density ofC particles,c0 the initial one, andD the diffusion constant
of bothA andC particles). We can then set up a controlled approximation scheme to obtain
the approach to the equilibrium, based on the fact that the previous correlation goes to zero as
t grows to infinity. We find that

〈c〉 − c∞ ∼ 2λµ2

(4λa∞ +µ)3
(c0 − c∞)(8πDt)−d/2 (2)

(λ andµ are respectively the rate of the forward and backward reactions anda∞ is the
equilibrium density ofA particles). The exponent of the power law is universal, as it comes
from the conservation law, but the amplitude is model-dependent. However, it is interesting to
note that Burlatskyet al [13] found the same result (up to a factor of 2) for a slightly different
model, their results relying, nevertheless, on an uncontrolled approximation (the closure of the
hierarchy). Note that the final approach to equilibrium is governed by the sign ofc0− c∞. In
fact, the density is expected to reach its equilibrium value monotonically.

In section 3 we consider the reactionA + B 
 C. Using the same method (in this case
there is a second quantity for which the Langevin equation can also be solved exactly), we find

〈c〉 − c∞ ∼ λ

2σ 3
AB

[σ 2
AB +µ2 − λ2(a0 − b0)

2](c0 − c∞)(8πDt)−d/2 (3)

whereσAB = λ(a0 + b0 + 2c0 − 2c∞) + µ, anda0 andb0 are the initialA andB particle
densities. An equivalent expression were obtained by Burlatskyet al [13] whena0 = b0.
Similar conclusions concerning universality and monotonicity can be drawn.
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In section 4 various generalizations are considered. First we investigate the case of
pair correlations between the reactants (i.e.A–A pairs forA + A 
 C andA–B pairs for
A + B 
 C). We show that, depending on the initial fraction of correlated particles, the
approach to equilibrium can become non-monotonic, or even, in some special cases, the power
law may change to a faster decay. The second part of this section is devoted to the interesting
problem of unequal diffusion constants for the different species. Even in extreme cases (such
as immobileC particles), the power law is unchanged and only the amplitude is modified. The
last generalization we consider is the case of segregated initial conditions. When initially the
A andB particles are spatially separated, a reaction front will develop. One natural question
to ask is to which rapidity the width of this front will grow. We are able to confirm the scaling
results obtained by Chopardet al [14] showing that this increase is governed by the mean-field
behaviourw(t) ∼ t1/2. This result is also valid for immobileC particles. Final remarks are
made in section 5.

2. TheA +A 
 C reaction

2.1. The model and the formalism used

Our starting point is the following continuous-time master equation
∂

∂t
P ({m}, {n}; t) = Da

`2

∑
i

∑
ei

[(mei + 1)P (. . . , mi − 1, mei + 1, . . . , {n}; t)

−miP ({m}, {n}; t)]
+
Dc

`2

∑
i

∑
ei

[(nei + 1)P ({m}, . . . , ni − 1, nei + 1, . . . ; t)− niP ({m}, {n}; t)]

+λ0

∑
i

[(mi + 2)(mi + 1)P (. . . , mi + 2, . . . , {n}; t)

−mi(mi − 1)P ({m}, {n}; t)]
+µ

∑
i

[(ni + 1)P ({m}, . . . , ni + 2, . . . ; t)− niP ({m}, {n}; t)]. (4)

The set{m} ({n}) denotes the occupation numbers ofA (C) particles in each lattice site and
P({m}, {n}; t) is the probability to find the configuration{m}, {n} at time t . This equation
describes the evolution of the probabilityP in time. A given configuration can change due
to four processes: by diffusion ofA particles (first and second lines of (4), whereDa is the
diffusion constant of theA particles and̀ is the lattice constant); by diffusion ofC particles
(with diffusion constantDc, third line). It will also change when twoA particles merge into
oneC, with a microscopic reaction rateλ0 (fourth and fifth lines) or, as shown in the last line
of (4), when aC particle reacts producing twoA (the corresponding rate is denoted byµ). In
the diffusion terms, the sum overei stands for a summation over all the nearest neighbours of
sitei. In this respect, equation (4) then models the time-continuous evolution of the reversible
reactionA +A
 C on ad-dimensional hypercubic lattice, allowing for multiple occupancy
on each site.

For the time being, we choose the initial conditions to be given by an uncorrelated
Poissonian distribution on each site and for each species:

P({m}, {n}; 0) = e−ã0−c̃0
∏
i

ã
mi
0

mi !

c̃
ni
0

ni !
(5)

whereã0 (c̃0) is the average occupation number per lattice site for theA (C) particles. A
correlated initial condition will be considered later, in section 4.
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More than twenty years ago, Doi [15] (see also [16]) developed a procedure mapping
the master equation to a second quantized representation by introducing sets of creation and
annihilation operators. In turn this second quantized form can be mapped to a field theory
(see [17]). Today these various steps are well known and we shall only quote the results we
need.

Let us introduce the (complex) fieldsa, ā, c andc̄. In terms of these fields, theA particle
density is given byna(x, t) = 〈〈a(x, t)〉〉 where〈〈·〉〉 denotes an average over e−S , whereS is
an action. In general,

〈〈A[a, c]〉〉 =
∫
DaDāDcDc̄A[a, c]e−S

/∫
DaDāDcDc̄e−S. (6)

The scriptD denotes functional integration andS is the action corresponding to our reaction,
obtained by the mapping of the master equation (4)

S =
∫

ddx
∫ tf

0
dt [ā(∂t −Da∇2)a + c̄(∂t −Dc∇2)c

+(ā2 + 2ā − c̄)(λa2 − µc)− δ(t)(a0ā + c0c̄)] (7)

whereλ = λ0`
d , a0 = ã0/`

d andc0 = c̃0/`
d . For convenience, the continuous space limit

(` → 0) has been taken. However, an equivalent result can be written keeping the lattice
structure. Note that any observableA can always be written as an expression which depends
solely on the fieldsa andc and not on the response fieldsā andc̄ (this comes from probability
conservation). The double bracket notation in (6) stresses the fact that average is taken over
both the dynamics and the initial conditions (theδ term).

The density correlation function for theA particles is given by

Ca(x, t) = 〈〈[a(x, t) + δd(x)]a(0, t)〉〉. (8)

Similar relations hold for theC particles.
The analysis of the action using the renormalization group formalism has proved to be

extremely powerful for various types of reaction (see [4, 5, 8, 9] for some recent examples).
In particular, it is especially well suited to distinguish universality classes. However, in our
case, this analysis is not well adapted because the upper critical dimension is infinite and
an expansion around it will clearly fail. In fact, to treat this problem, we prefer to use the
formalism of Langevin equations. These equations can be very easily obtained by replacing
the quartic piece of the action with an integral over a noise variable:

exp[−ā2(λa2 − µc)] ∼
∫ +∞

−∞
dζ exp[āζ − 1

4ζ
2/(µc − λa2)] (9)

and integrating out the response fieldsā andc̄. One then obtains the two following equations:

(∂t −Da∇2)a(x, t) = −2λa(x, t)2 + 2µc(x, t) + ζ(x, t) (10)

(∂t −Dc∇2)c(x, t) = λa(x, t)2 − µc(x, t) (11)

whereζ is a complex Gaussian noise with zero mean value, whose correlation is given by

〈ζ(x, t)ζ(x′, t ′)〉 = 2〈µc(x, t)− λa(x, t)2〉δ(d)(x− x′)δ(t − t ′). (12)

Here, the single bracket notation stands for the average over the noise. There is no longer any
need to average over the initial conditions as it has been explicitly performed when integrating
over the response field.

Note that by using (11), one has, for homogeneous initial conditions,

〈ζ(x, t)ζ(x′, t ′)〉 = −2∂t 〈c(t)〉δ(d)(x− x′)δ(t − t ′). (13)
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As the density is expected to reach a (reversible) stationary state, the noise correlation should
vanish in the long time limit (limt→∞ ∂t 〈c(t)〉 = 0). We emphasize that this property does
not imply that the reaction stops at equilibrium. It just shows that the complex quantitiesa

andc (which arenot the densities) do not fluctuate any more. As we shall see later, the true
densities always fluctuate, even at equilibrium. This, together with the fact that the equation
for the variablec(x, t) comes without explicit noise (except through thea dependence), are
the central points of our analysis.

These Langevin equations look very similar to the rate equations, with the addition of the
noise. One then might question the necessity of deriving them in a such complicated way, as it
would have been easier just to add noise to the rate equation. In fact this method allows us to
derive exactly the noise and its noise–noise correlation function. In particular one sees that the
noise is complex, a result which is at odds with the usual guess made when writing heuristic
Langevin equations. It should also be emphasized that the variablesa(x, t) andc(x, t) donot
represent the density, because they are complex. The mean densityna(t) (nc(t)) is given by
the average ofa(x, t) (c(x, t)) over the noise. One easily convinces oneself that this average
gives a real value for the density.

An immediate consequence of the vanishing of the fluctuations at equilibrium is the
possibility of computing the actual values of the equilibrium densities, which are simply given
by their mean field values. Denoting bya∞ andc∞ such densities, one has

λa2
∞ = µc∞ (14)

which together with the conservation law

a∞ + 2c∞ = a0 + 2c0 (15)

give us

a∞ = µ

4λ

(√
1 + 8λ(a0 + 2c0)/µ− 1

)
. (16)

It is easy to check that this result is a solution of the detailed balance condition of the master
equation (4), which should hold as the stationary state is an equilibrium state. Note that we do
not expect this result to be universal, i.e. apply for all models describing a reversibleA+A
 C

reaction. In fact this result strongly relies on the multiple occupancy property and single-site
reactions of our model. It can indeed be shown [18] that, in one dimension, a spin chain model
of this reaction with exclusion process leads to a different steady-state density (equation (14)
is replaced by another condition). However, in the small density limit (dilute gas) the latter
result converges toward the mean field value which is expected to be universal in this regime.

2.2. Conservation law

The next step in our analysis of the model is, of course, to obtain the approach toward
equilibrium. It is easily seen that the rate equations give an exponential decay. The fluctuations
are expected, however, to change this law. Our starting point to analyse this problem will be
the two equations (10) and (11) which, with the noise–noise correlation, completely describe
our model. In order to simplify, we shall now consider the case of equal diffusion constant
Da = Dc ≡ D. The case for whichDa 6= Dc will be considered in section 4.

First one remarks that the quantityχ = a + 2c obeys a noisy diffusion equation:

(∂t −Da∇2)χ(x, t) = ζ(x, t). (17)

This reflects the fact that the quantityna(x, t) + 2nc(x, t) = 〈χ(x, t)〉 is conserved by the
dynamics, which in turn is a statement about mass (or energy) conservation. Equation (17) is
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easily solved, and one finds

χ(x, t) =
∫ t

0
dt ′
∫

ddx ′G0(x− x′, t − t ′)ζ(x′, t ′) +
∫

ddx ′G0(x− x′, t)χ(x′, 0) (18)

whereχ(x, 0) is the initial condition andG0(x, t) is the free propagator:

G0(x, t) = θ(t)(4πDt)−d/2 exp

(
− x2

4Dt

)
(19)

(θ(t) is the usual Heaviside step function). Using〈ζ 〉 = 0,

〈χ(x, t)2〉 − 〈χ(x, t)〉2 = −2
∫ t

0
dt1 [8πD(t − t1)]−d/2∂t 〈c(t1)〉 (20)

with 〈χ(x, t)〉 = a0 + 2c0. Although the exact structure of〈c(t)〉 is not known (as this is
precisely the quantity we want to compute), we do not need it to obtain〈χ(x, t)2〉 for long
time, as, whent →∞
〈χ(x, t)2〉 − 〈χ(x, t)〉2 = −2[8πDt ]−d/2

∫ ∞
0

dt1 ∂t 〈c(t1)〉 = −2(c∞ − c0)[8πDt ]
−d/2.

(21)

At this stage several remarks have to be made. First, the integrand of expression (20)
diverges whent1 → t . Ford > 2 the integral is thus singular. This divergence is, however,
artificial as it comes from the continuous space limit we took when writing the action, and it
can be avoided by putting a short distance cut-off of the order of` in the space integration. In
turn, once the integration over space is performed, this small distance cut-off will produce a
cut-off functionCcf(`

2/D(t − t1)) which multiplies the integrand of equation (20). The exact
form of this cut-off function is unimportant. It should be a rapidly decreasing function for
largex and it should go to 1 whenx goes to 0 (for example a possible candidate could be
Ccf(x) ∼ exp(−x2)). In the following, such regularization will always been understood when
facing ultra-violet divergent integrals. A second remark concerns the sign of the variance ofχ

which can be positive or negative, depending on the initial densitiesa0 andc0, i.e. on the sign
of c0− c∞. (Note thatc∞ depends both ona0 andc0 and it is always possible to adjusta0 such
thatc∞ < c0, or c∞ > c0.) The possibility of having negative variance plays a central role. In
particular, as shown in section 2.3, it guarantees a monotonic approach towards equilibrium,
at least for times at which our analysis applies. Whereas this result is not really surprising
as it was already obtained by the rate equation, one should note that it refutes the results of a
common method of solving such problems. From the two Langevin equations (10) and (11),
a natural approximation for the density would be to consider the standard rate equations

(∂t −D∇2)â(x, t) = −2λâ(x, t)2 + 2µĉ(x, t) (22)

(∂t −D∇2)ĉ(x, t) = λâ(x, t)2 − µĉ(x, t) (23)

with Poissonian random initial conditions. Whereas this approximation gives perfectly good
results, both for short and long times (but not for intermediate times), for the two species
annihilation reactionA + B → ∅ (see for example [8, 19]), in our case it fails to predict the
anti-correlation of the conserved field. Indeed, it is easy to solve the equation forχ̂ = â + 2ĉ.
One has

χ̂(x, t) =
∫

ddx ′G0(x− x′, t)χ̂(x′, 0). (24)

Denoting the average over the initial conditions by〈·〉p, one readily finds that the density〈χ̂〉p
is conserved:

〈χ̂(x, t)〉p = a0 + 2c0. (25)
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However, due to the Poissonian initial conditions which imply

〈â(x, 0)â(x′, 0)〉p = a2
0 + a0δ

(d)(x− x′) (26)

〈ĉ(x, 0)ĉ(x′, 0)〉p = c2
0 + c0δ

(d)(x− x′) (27)

one finds

〈χ̂(x, t)2〉p = (a0 + 2c0)
2 + (a0 + 4c0)(8πDt)

−d/2. (28)

This approximation gives satisfactory results concerning the power law approach to
equilibrium, however, it is unable to predict the correct sign of the correlations. As a
consequence of this erroneous sign, the density of theC particles would always approach
its stationary value from above, leading to a non-monotonic behaviour, whenc0 < c∞.

2.3. Approximation scheme for the concentration ofC particles

In this section, we would like to compute the approach of the density to its stationary value.
Let us defineδc(x, t) = c(x, t) − c∞ andδχ(x, t) = χ(x, t) − (a0 + 2c0). The Langevin
equation forδc is then given by

(∂t −D∇2 + σAA )δc(x, t) = 4λδc(x, t)2 − 4λδχ(x, t)δc(x, t) + λδχ(x, t)2

+1
2(σAA − µ)δχ(x, t) (29)

where we putσAA = 4λa∞ + µ. The explicit solution of (29) is unknown. However, we can
obtain the large time behaviour of〈δc〉, by exploiting thatδχ is a Gaussian random variable
with vanishing variance whent goes to infinity. The formal solution of (29) can be written in
the form

δc = G0[δc] + G[4λδc2 − 4λδχδc + λδχ2 + 1
2(σAA − µ)δχ ] (30)

where to simplify our notation we have introduced

G[f ](x, t) =
∫ t

0
dt
∫

ddx ′ e−σAA (t−t ′)G0(x− x′, t − t ′)f (x′, t ′) (31)

and

G0[f ](x, t) =
∫

ddx ′ e−σAA tG0(x− x′, t)f (x′, 0). (32)

The first term in (30) comes from the initial condition. It simply reduces to(c0 − c∞)e−σAA t .
Iterating this solution will give eventually a series inG0[δc], G[δχ ] and G[δχ2], with

appropriate insertions of the operatorG. Three kinds of terms then occur: terms containing
only power ofG0[δc], terms containing only power ofG[δχ ] andG[δχ2], and mixed terms.
One can easily see that the first kind of terms gives exponential decay in the long time limit,
they can thus be discarded as we are interested in the asymptotic time regime of〈δc〉 and〈δc2〉.
After averaging, and due to the particular structure of the operatorG0, the mixed terms will
also give exponential decay whent →∞. They can thus be discarded. Therefore, in the long
time limit, 〈δc〉 reads:

〈δc〉 = λG[〈δχ2〉] − 2λ(σAA − µ)G[〈δχG[δχ ]〉] + λ(σAA − µ)2G[〈G[δχ ]2〉] + · · · (33)

where the ellipsis stands for terms containing at least a fourth power ofδχ . In the following,
we shall show that they give sub-leading contributions to the asymptotic time behaviour of
〈δc〉. Let us now analyse the first term of that equation. It reads

G[〈δχ2〉] =
∫ t

0
dt ′
∫

ddx e−σAA (t−t ′)G0(x− x′, t − t ′)〈δχ(x′, t ′)2〉. (34)
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The large time behaviour of this expression can be obtained in several ways. One would be to
integrate over the space dependence, and then to use the property∫ t

0
dt ′ e−α(t−t

′)f (t ′) = 1

α
f (t) + O(f ′(t)) (t →∞) (35)

which is of course only valid iff ′(t) is negligible with respect tof (t) (in particular this
property is false whenf (t) is an exponential). In our case, one could safely use it, as〈δχ2〉
(which plays the role off (t)) decays with a power law. Thus one finds

G[〈δχ2〉] = 1

σAA
〈δχ2〉. (36)

Another equivalent way to obtain this result is to note that the leading behaviour of the time
integral is obtained whent ′ → t , i.e. one can simply replace e−σAA (t−t ′) with the delta function
δ[σAA (t − t ′)] and then use that

G0(x− x′, 0) = δ(d)(x− x′). (37)

In other words, in the long time limit, the operatorG can simply be replaced byσ−1
AA . Applying

this method for all the other terms of (33), one readily obtains the large time behaviour for
〈δc〉:

〈δc〉 =
(
λ

σAA
− 2λ(σAA − µ)

σ 2
AA

+
λ(σAA − µ)2

σ 3
AA

)
〈δχ2〉 + · · · . (38)

Note that the same result would have been obtained using the property (35). The terms
containing higher powers ofG[δχ ] can be treated in the same way. They will give (sub-
leading) contributions of order〈δχ2〉n, with n > 2. Finally, one finds

〈δc〉 = λµ2

σ 3
AA

〈δχ2〉 + · · · = 2λµ2

σ 3
AA

(c0 − c∞)(8πDt)−d/2 + · · · . (39)

Sub-leading corrections to that result are of ordert−d or t−d/2−1, and will generally depend on
microscopic details such as the lattice constant, etc.

In summary, using the fact thatδχ is a Gaussian variable with a vanishing variance, we
have writtenδc as a power series inδχ , in a systematic way (formally, using this method, one
can compute the sub-leading corrections, however the calculation may become rather tricky).
The same method may be used to obtain〈δc2〉, yielding

〈δc2〉 =
(
σAA − µ

2σAA

)2

〈δχ2〉 + · · ·

= 1

2

(
σAA − µ
σAA

)2

(c0 − c∞)(8πDt)−d/2 + · · · (40)

which is not necessarily positive, asc0 can be less thanc∞.
Equation (40) implies that〈δc〉 is not a self-averaging quantity. Indeed, the relative density

fluctuations are given by∣∣∣∣ 〈δc2〉 − 〈δc〉2
〈δc〉2

∣∣∣∣1/2 = 1√
2

σAA − µ
λµ2

σ 2
AA |c0 − c∞|−1/2(8πDt)d/4. (41)

They diverge in the long time limit.
As pointed out previously, the fieldc(x, t) does not fluctuate at equilibrium. What

happens for the true density〈c〉? From equation (8) the density correlation is easily calculated.
Introducing

δCc(t) = 1

Ld

∫
ddx 〈δc(0, t)δc(x, t)〉 (42)
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(whereL is the system size), one finds

Cc(t) = 1

Ld

∫
ddx Cc(x, t) = 1

Ld

∫
ddx 〈c(x, t)c(0, t)〉 + 1

Ld
〈c(0, t)〉

= c2
∞ + 2c∞〈δc〉 + δCc(t) +

1

Ld
(c∞ + 〈δc〉). (43)

Its variance is given by

Cc(t)− 〈c〉2 = 1

Ld
(c∞ + 〈δc〉) + δCc(t)− 〈δc〉2. (44)

In the asymptotic time limit, where our analysis applies, one easily verifies, by computing
δCc(t), that this variance is, as expected, positive, the density being a physical quantity. At
equilibrium,Cc(x, t) − 〈c〉2 reduces toδ(d)(x)c∞, the statement that the steady state is just
independent Poisson distributions ofA andC particles, so the fluctuations in the local density
of C are proportional to the density itself.

Intriguingly, the same results for the density and its correlations could be obtained by
imposing(∂t −D∇2) δc = 0 in equation (29) and then solving the quadratic equation forδc.
However, this approximation is uncontrolled, and only the lowest-order terms can be obtained.
It is possible to explain why such a crude approximation works, by noting that even thoughδc

is a random variable, it should not vary too rapidly, as it only depends onδχ and not directly
on the noiseζ .

Note that the sign of〈δc〉 is given by〈δχ2〉 (or equivalently byc0−c∞). This means that if
initially 〈δc〉 is positive, so will it be for large time (note that if〈δχ2〉 were a positive function,
〈δc〉 would not have been a monotonic function of time whenc0 < c∞). No information is
given for intermediate times, but a non-monotonic behaviour would be surprising.

The computation of the density correlation functions goes along the same lines. Using
thata = a∞ + δχ − 2δc and equation (8), one obtains (whent →∞)

Ca(x, t) = a2
∞ + δ(d)(x)a∞ +

µ2

σ 3
AA

(a∞ − a0)(8πDt)
−d/2(µe−x

2/8Dt − 2λδ(d)(x)) (45)

where the Gaussian factor e−x
2/8Dt comes from the expression for〈δχ(x, t)δχ(0, t)〉 (which

is easily obtained from (18)). The correlation lengthξa is given by

ξ2
a =

∣∣∣∣
∫

ddx x2[Ca(x, t)− a2
∞]∫

ddx [Ca(x, t)− a2∞]

∣∣∣∣ = 4dπDt |a∞ − a0|
a∞ − a0 + a∞σ 3

AA/µ
3
. (46)

The absolute values ensure the positiveness ofξ2
a (note thata∞−a0 +a∞σ 3

AA/µ
3 > 0). When

a0 > a∞, the second moment ofCa(x, t)− a2
∞ is negative, indicating that theA particles are

negatively correlated. The same conclusion holds for theC particles.

3. The two-species reversible reactionA +B 
 C

3.1. The model

In this section we study the reversibleA + B 
 C reaction using the previous approach. As
before, our starting point is the continuous time master equation describing the process on a
d-dimensional hypercubic lattice, allowing multiple occupancy. LetP({l}, {m}, {n}; t) be the
probability to find the configuration{l}, {m}, {n} at timet . The set{l} describes the occupation
numbers on each lattice site for theA particles,{m} is used for theB particles and{n} for the
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C’s. The master equation is then
∂

∂t
P ({l}, {m}, {n}; t) = Da

`2

∑
i

∑
ei

[(lei + 1)P (. . . , li − 1, lei + 1, . . . , {m}, {n}; t)

−liP ({l}, {m}, {n}; t)]
+
Db

`2

∑
i

∑
ei

[(mei + 1)P ({l}, . . . , mi − 1, mei + 1, . . . , {n}; t)

−miP ({l}, {m}, {n}; t)]
+
Dc

`2

∑
i

∑
ei

[(nei + 1)P ({l}, {m}, . . . , ni − 1, nei + 1, . . . ; t)

−niP ({l}, {m}, {n}; t)]
+λ0

∑
i

[(li + 1)(mi + 1)P (. . . , li + 1, . . . , mi + 1, . . . , {n}; t)

−mi(mi − 1)P ({l}, {m}, {n}; t)]
+µ

∑
i

[(ni + 1)P ({l}, {m}, . . . , ni + 2, . . . ; t)− niP ({l}, {m}, {n}; t)]. (47)

This master equation has the same structure as equation (4), and the same notation is used (Db

is the diffusion constant ofB particles). For the time being, we choose homogeneous initial
conditions given by an uncorrelated Poissonian distribution on each site and for each species:

P({l}, {m}, {n}; 0) = e−ã0−b̃0−c̃0
∏
i

ã
li
0

li !

b̃
mi
0

mi !

c̃
ni
0

ni !
(48)

whereb̃0 is the initial average occupation number ofB particles.
In the field theory formalism, the action is given by

S =
∫

ddx
∫ tf

0
dt [ā(∂t −Da∇2)a + b̄(∂t −Db∇2)b + c̄(∂t −Dc∇2)c

+(āb̄ + ā + b̄ − c̄)(λab − µc)− δ(t)(a0ā + b0b̄ + c0c̄)] (49)

whereb0 = b̃0/`
d . In terms of Langevin equations we find

(∂t −Da∇2)a(x, t) = −λa(x, t)b(x, t) +µc(x, t) + ζa(x, t) (50)

(∂t −Db∇2)b(x, t) = −λa(x, t)b(x, t) +µc(x, t) + ζb(x, t) (51)

(∂t −Dc∇2)c(x, t) = λa(x, t)b(x, t)− µc(x, t) (52)

whereζa andζb are two complex Gaussian noises with zero mean value and whose correlations
are given by

〈ζa(x, t)ζa(x′, t ′)〉 = 〈ζb(x, t)ζb(x′, t ′)〉 = 0 (53)

〈ζa(x, t)ζb(x′, t ′)〉 = 2〈µc(x, t)− λa(x, t)b(x, t)〉δ(d)(x− x′)δ(t − t ′)
= −2∂t 〈c(t)〉δ(d)(x− x′)δ(t − t ′) (54)

(for homogeneous initial conditions). As for theA + A 
 C reaction, the noise vanishes at
equilibrium. The equilibrium densities are thus given by their mean-field solution:

λa∞b∞ = µc∞ (55)

which together with the two conservation laws

a∞ + b∞ + 2c∞ = a0 + b0 + 2c0 (56)

a∞ − b∞ = a0 − b0 (57)

permits us to obtain the equilibrium densities as a function of the initial conditions.
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3.2. Conserved quantities

The approach toward equilibrium will be obtained through the same steps as before. First we
write the Langevin equation for the conserved quantities and then, once these equations are
solved, we can set up a systematic approximation scheme forδc.

Let us introduceψ = a − b andχ = a + b + 2c. From equations (50)–(52), one readily
obtains the two following Langevin equations:

(∂t −D∇2)ψ(x, t) = ζψ(x, t) (58)

(∂t −D∇2)χ(x, t) = ζχ (x, t) (59)

where in order to simplify, we supposedDa = Db = Dc ≡ D (the case of different diffusion
constants will be considered in section 4). The noisesζψ andζχ have a vanishing mean and
their two-point correlations are

〈ζψ(x, t)ζψ(x′, t ′)〉 = −〈ζχ (x, t)ζχ (x′, t ′)〉
= 2∂t 〈c(t)〉δ(d)(x− x′)δ(t − t ′) (60)

〈ζψ(x, t)ζχ (x′, t ′)〉 = 0. (61)

The solution of these two Langevin equations has the same form as equation (18), with
appropriate initial conditions (ψ(x, 0) = a0 − b0 andχ(x, 0) = a0 + b0 + 2c0). ψ and
χ then have a Gaussian distribution with a non-vanishing mean

〈ψ〉 = a0 − b0 〈χ〉 = a0 + b0 + 2c0 (62)

and their variance is

〈ψ2〉 − 〈ψ〉2 = −(〈χ2〉 − 〈χ〉2) = 2
∫ t

0
dt1[8πD(t − t1)]−d/2∂t 〈c(t1)〉. (63)

In the long time limit, we again find the power law decay:

〈ψ2〉 − 〈ψ〉2 = 2(c∞ − c0)(8πDt)
−d/2 (t →∞). (64)

3.3. Approximation scheme

The next step is to set up our approximation scheme for〈δc〉 ≡ c − c∞. Let us define
δψ = ψ − (a0 − b0) andδχ = χ − (a0 + b0 + 2c0). The Langevin equation forδc reads

(∂t −D∇2 + σAB)δc(x, t) = λδc(x, t)2 − λδχ(x, t)δc(x, t) + 1
4λ[δχ(x, t)2 − δψ(x, t)2]

+1
2(σAB − µ)δχ(x, t)− 1

2λ(a0 − b0)δψ(x, t) (65)

where we putσAB = λ(a0 + b0 + 2c0− 2c∞) +µ. This equation possesses the same structure
as equation (29). By repeating the same scheme, we may then obtain the large time behaviour
of 〈δc〉. Finally, we find

〈δc〉 = λµ2

4σ 3
AB

〈δχ2〉 − λ

4σAB

[
1−

(
λ
a0 − b0

4σAB

)2
]
〈δψ2〉 + · · · (66)

or, by putting the large time expression for〈δχ2〉 and〈δψ2〉
〈δc〉 = λ

2σ 3
AB

[σ 2
AB +µ2 − λ2(a0 − b0)

2](c0 − c∞)(8πDt)−d/2 + · · · . (67)

Note thatσ 2
AB +µ2 − λ2(a0 − b0)

2 = 2µ(σAB + 2λc∞) > 0.
Similarly, one obtains theC-particle correlation:

〈δc2〉 = 2λµc∞
σ 2

AB

(c0 − c∞)(8πDt)−d/2 + · · · . (68)

Sub-leading corrections to these laws are of ordert−d or t−d/2−1.
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4. Extensions

4.1. Correlations in the initial condition

Recently, Yanget al [20] showed that in theA + B 
 C case, and for correlated initial
conditions, the power law approach (68) could be modified. More precisely, for a particular
initial condition, they found that in one and three dimensions the approach to equilibrium was
of the ordert−d/2−1, i.e. faster than in the uncorrelated case. Whereas it seems to be at odds
with the fact that the power law should be universal (see the final section), we shall show in
this section how such a behaviour can be obtained within our approach.

Let us consider the reactionA +A 
 C, when initially a fraction of the total density of
theA particles are not distributed independently, but are disposed in pairs having a separation
radiusσ (eachA–A pairs are supposed to be independently distributed). We still denote the
total density bya0, and the density of pairs will be denoted byn0. In order to take this condition
into account in our formalism, one should add the following term in the action (7)

− n0

sdσ d−1

∫
ddx

∫
ddy ā(x, 0)ā(y, 0)δ(|x− y| − σ). (69)

(sd is the surface ofd dimensional sphere of radius unity). In the language of Langevin
equations, this new term translates into a new contribution to the noise correlation, namely

〈ζ(x, t)ζ(x′, t ′)〉 = −2∂〈c(t)〉δ(d)(x− x′)δ(t − t ′) +
n0

sdσ d−1
2δ(|x− x′| − σ)δ(t)δ(t ′).

(70)

The only relevant effect of this new contribution is to affect the variance ofχ , to which one
should add

〈δχ2〉corr = 2n0

sdσ d−1

∫
ddx ′

∫
ddx ′′G0(x− x′, t)G0(x− x′′, t)δ(|x− x′| − σ)

= 2n0 exp(−3σ 2/4Dt)(8πDt)−d/2. (71)

For long time,〈δχ2〉 then becomes (we used that 2(c0 − c∞) = a∞ − a0)

〈δχ2〉 = [a∞ − (a0 − 2n0)](8πDt)
−d/2 + · · · (72)

a0 − 2n0 represents the initial density of uncorrelatedA particles. Inserting this result into
formula (39) one obtains theC-particle density:

〈δc〉 = λµ2

σ 3
AA

(a∞ − a0 + 2n0)(8πDt)
−d/2 + · · · . (73)

Initial correlations could then lead to non-monotonic behaviour of〈δc〉, as a∞ − a0 and
a∞ − a0 + 2n0 do not have necessarily the same sign (see [13,21]).

A case of special interest occurs when we choose 2n0 to be exactlya∞−a0. The amplitude
of the leading term of the approach to equilibrium vanishes and one should consider the sub-
leading corrections to〈δχ2〉. As a consequence the approach to equilibrium will be faster. It
is easy to verify that these corrections will be of ordert−d/2−1, with an amplitude that depends
on microscopic parameters such asσ , the initial correlation length, or̀, the lattice constant.
Note that the condition 2n0 = a∞ − a0 can be easily obtained experimentally: consider a
system whereA andC particles are at equilibrium. At timet = 0, we excite some fraction of
C particles such that they break up into pairs of correlatedA particles (this excitation can be
for example obtained by a photo-flash [20]). Let us denote byã∞ andc̃∞ the concentrations
of A andC particles before the excitation (note that we were at equilibrium:λã2

∞ = µc̃∞).
At time t = 0, the initial densities will bea0 = ã∞ + 2n0 and c0 = c̃∞ − n0. Now, as
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a0 + 2c0 = ã∞ + 2c̃∞, one must then havea∞ = ã∞, which implies 2n0 = a0 − a∞. This
initial condition correspond exactly to the case studied by Yanget al [20], for the two-species
reaction.

Similar conclusions can be drawn for theA + B 
 C reaction when initially a given
amount ofA andB particles are distributed in pairs of radiusσ (initial correlations among
particles of the same species will not be considered, as they should decay exponentially fast).
The action gets modified in the same way as previously, by adding a new initial term:

− n0

sdσ d−1

∫
ddx

∫
ddy ā(x, 0)b̄(y, 0)δ(|x− y| − σ). (74)

In terms of the Langevin equation it also modifies the noiseζ , leading to a new contribution
for both〈δψ2〉 and〈δχ2〉 (see (71)). Finally, one gets

〈δχ2〉 = −〈δψ2〉 = [a∞ − (a0 − n0)](8πDt)
−d/2 + · · · . (75)

Heren0 is the initial concentration of correlated pairs, it is also the initial density of correlated
A (orB) particles. In contrast to the irreversibleA+B → ∅ case, the presence of correlations
in the initial state does not modify the long time behaviour (except in some special limits as
discussed above).

4.2. Unequal diffusion coefficient

The case of unequal diffusion constant is of special interest, because if, for some reasons, one
kind of particle moves very slowly compared to the other, one could legitimately question the
validity of our previous results. In fact we shall see that even in the worse case (one species at
rest) the power law does not change, only the amplitude is affected.

Let us consider first theA+A
 C reaction, the generalization to theA+B 
 C reaction
being straightforward. The two Langevin equations associated with that model are

(∂t −Da∇2)δχ + 2(Da −Dc)∇2 δc = ζ (76)

(∂t −Dc∇2 + σAA ) δc = 4λδc2 − 4λδχδc + λδχ2 + 1
2(σAA − µ)δχ. (77)

The first consequence of having two different diffusion constants lies in the fact that the
Langevin equation forδχ is no longer closed, but contains a term proportionnal toδc. The
main question we want to address, is how does this extra term affect the large time behaviour of
the〈δχ2〉? One quick and false answer would be to say that, asδc is a slowly varying random
variable for large time, it should not modify the large time behaviour ofδχ . However, this
picture is not true, asδc itself depends onδχ in a non-trivial way. In fact, a better way to treat
this term is to insert it into the propagator, which is then no longer diagonal. Also putting in it
the term proportional toδχ in equation (77) (which was previously treated like an interaction
term), the propagator is given, in Fourier and Laplace transform representation, by the inverse
of the following matrix:

M =
(

s +Dap
2 −2(Da −Dc)p

2

− 1
2(σAA − µ) s +Dcp

2 + σAA

)
(78)

wherep ands are the Fourier and Laplace conjugated variables of space and time (this last
expression is very easily obtained in the field theory formalism by considering the quadratic
terms). For theδχδχ propagator, one then finds in the(p, s) representation

Gδχδχ,0(p, s) = s +Dcp
2 + σAA

(s +Dap2 + σAA )(s +Dcp2) + (Da −Dc)µp2
. (79)
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Figure 1. Set of propagators (upper part) and vertices (lower part) needed for the diagrammatic
representation of the Langevin equations. The noise term is represented beginning with a cross.
The arrow on the left represents the direction of the time.

Figure 2. Diagrammatic representation of〈δχ2〉. The dot stands for noise–noise correlation.

Figure 3. Effectives vertices appearing in all diagrams besides the first one of figure 2. They all
give a sub-leading contribution to〈δχ2〉.

Theδχδc propagator is given by

Gδχδc,0(p, s) = 2(Da −Dc)p
2

(s +Dap2 + σAA )(s +Dcp2) + (Da −Dc)µp2
. (80)

The two other propagators could be obtained in the same way, but we are not interested in
them. Our purpose now is to compute the large time limit of〈δχ2〉. Once this obtained, we
shall then use our approximation scheme (applied to equation (77)), in order to derive its large
time behaviour.

For computing the second moment ofδχ , it is easier to consider a diagrammatic
representation (in this paragraph, we follow the line of reasoning developed in [8] for the
irreversible reactionA+B → ∅, whenDa 6= DC). A δχδχ propagator will be represented by
a dashed line and aδcδc propagator by a full line. Off-diagonal propagators will be represented
by mixing of the two lines (see figure 1). From the Langevin equation (77), three different
vertices (four with the noise) can be identified, their representation is also given in figure 1.
As we shall eventually average over the noise, only diagrams containing two merging noise
lines at their beginning can subsist. To obtain the second moment ofδχ , we simply have to
draw all diagrams ending with two mergingδχ lines (see figure 2). IfDa = Dc, only the first
diagram would give a non-vanishing contribution (in agreement with equation (20)). In fact,
the subsequent terms of the sum all contain at least one of the three sub-diagrams shown in
figure 3. However, in the language of field theory, these sub-diagrams give rise to effective
vertices of the form ¯δχ∇2δχ2, ¯δχ∇2δχδc and ¯δχ∇2δc2, which, by simple power counting,
turn out to be irrelevant. They will only give a sub-leading contribution to〈δχ2〉. Hence, its
leading term is only given by the first diagram of figure 2.

To compute this contribution one first needs to obtainGδχδχ,0 in (p, t) space. Inverting
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the Laplace transform, one finds

Gδχδχ,0(p, t) = 1

r(p)
exp[− 1

2(Da +Dc)p
2t − 1

2σAA t ]

×{[σAA − (Da −Dc)p
2] sinh[1

2r(p)t ] + r(p) cosh[12r(p)t ]}θ(t) (81)

where

r(p) = ((σAA + (Da −Dc)p
2)

2 − 4µ(Da −Dc)p
2)1/2. (82)

One is now in position to obtain〈δχ2〉. To leading order, it is given by

〈δχ2〉 = −2
∫ t

0
dt ′
∫

ddp

(2π)d
[Gδχδχ,0(p, t − t ′)]2

∂t 〈δc(t ′)〉 (83)

whose large time behaviour (which can be obtained by taking the largeσAA andµ limit) reads

〈δχ2〉 = −2(8πDeff)
−d/2

∫ t

0
dt ′ (t − t ′)−d/2∂t 〈δc(t ′)〉 + · · · (84)

with

Deff = Dc + (Da −Dc)
µ

σAA
. (85)

This is the same as but the result of equation (20), withD replaced byDeff .
We can now come back to the Langevin equation forδc which is exactly the same as

the one written for equal diffusion constant (equation (29)), withD replaced byDc, and then
use our approximation scheme as before. The final expression for〈δc〉 will then be given by
equation (39) withD replaced byDeff .

It is particularly interesting to consider the cases when eitherDa orDc vanish. IfDc = 0,
one findsDeff = Daµ/σAA . Although theC particles do not move, one still observes a power
law decay of the concentration, but with a smaller diffusion constant than whenDc = Da

(µ 6 σAA ). The fact that theC particles are at rest is compensated by the movement of
theA particles, which leads to an effective diffusion of theC particles. More surprising is
the caseDa = 0. At first sight, one could expect that because theA particles do not move,
the forward reaction is essentially inoperative (onlyA particles at the same site could react),
however, one should not forget that theC particles still move and that they effectively carry
twoA particles (thus allowing some mixing of theA particles), and secondly this motion still
allows the fluctuations ofδχ to be smoothened diffusively.

For theA + B 
 C reaction, the case whereDc differs fromDa = Db can be studied
in exactly the same way. All we said for theA + A 
 C reaction is still valid, with the
modification that, asδψ only depends on the random variablesa andb, it is not modified.
Only δχ changes. As a consequence, the formula (64) is still valid, and forδχ one finds

〈δχ2〉 = 2(c∞ − c0)(8πDeff t)
−d/2 (t →∞) (86)

whereDeff is given by equation (85) withσAA replaced byσAB. The expression for〈δc〉 then
becomes

〈δc〉 = λ

2σ 3
AB

[
µ2

(
1− σAB − µ

σAB

Da −Dc

Da

)−d/2
+ σ 2

AB − λ2(a0 − b0)
2

]
×(c0 − c∞)(8πDat)

−d/2. (87)

WhenDc = 0, the amplitude is slightly modified (compared to the caseDc = Da) but one
could still consider the diffusion constant to beDa. Note that the caseDa = 0 cannot be
treated by this formalism.
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The case where all the diffusion constants are different can be considered as well. We
shall not treat it here, but the result should not differ too much from the previous one. Indeed
the main new ingredient is that〈δψ2〉 is modified. However, it has been shown that, for the
A + B → ∅ reaction, this leads only to a change in the amplitude [8]. We expect this result
to be only slightly modified in the reversible case. Forδχ the same analysis as before applies,
but with more complicated expressions. The casesDa = 0 orDb = 0 cannot be treated with
this formalism.

4.3. Segregated initial conditions

Our approach can also be extended to other initial conditions. TheA + B 
 C reaction with
initially segregated reactants (say, theA particles on the right, theB ones on the left and no
C particles) is of particular interest, mainly due to the dynamics of the reaction front. In the
irreversible case, it is now well established that the width of the front increases with a power
laww(t) ∼ tα [22–24]. Two different cases may be distinguished: above two dimensions, the
exponent takes its mean-field valueα = 1

6, whereas below two dimensions fluctuation effects
play a dominant role, leading toα = 1/[2(d + 1)]. Extrapolating our previous results, one
could expect that the fluctuations in the conserved quantities will play an important role. In
fact it appears that the width of the front indeed increases with a power laww(t) ∼ tα, but
this exponent takes its mean-field value (α = 1

2) for anydimensions. These surprising results
have already been obtained by Chopardet al [14] using scaling arguments and numerical
simulations. In this section, we shall show how this behaviour can be confirmed within our
formalism.

The problem is described by the Langevin equations (50)–(52) with the initial conditions

ψ(x, 0) = n0[θ(x1)− θ(−x1)] (88)

χ(x, 0) = n0 (89)

c(x, 0) = 0. (90)

For simplicity we have chosen the particle to have the same diffusion constants; moreover both
reacting speciesA andB are supposed to be homogeneously distributed (with densityn0) in
their respective semi-infinite sub-space. Let us denote byĉ the mean-fieldC particles density.
One easily shows that in the long time limit, it takes a scaling behaviour:

ĉ(x, t) ' c∞(ξ) (91)

whereξ = x1/
√

4Dt . The exact form ofc∞(ξ) is unimportant. It can be obtained by equating
to zero the right-hand side of the rate equation for theC particles. Defining the width of the
front by the square root of the second moment of theC particles density, one immediately
obtains, in the mean-field case, the exponentα = 1

2 for the reaction front.
In order to take into account the fluctuations, one first needs to integrate the equation for

the conserved quantitiesψ andχ . In the long time limit, one can show that

〈δψ2〉 = −〈δχ2〉 ' −(8πDt)−d/2
∫ +∞

−∞

dy√
π

e−y
2
c∞(ξ − y). (92)

The Langevin equation for theC particles can be rewritten usingδc ≡ c − ĉ, so that

[∂t −D∇2]δc = 1
4λ(δχ

2 − δψ2) + λδc2 − λδχδc + 1
2[σ(x1, t)− µ]δχ

− 1
2λn0 erf(ξ)δψ + σ(x1, t)δc (93)

whereσ(x1, t) = λn0 − 2λĉ(x1, t) + µ, and erf is the error function. This equation is very
similar to equation (65), with the difference thatσ has become time and position dependent.
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As a consequence, we are unable to write in a closed form the propagator related to this
equation, and thus to apply our approximation scheme. However, we can still deduce the large
time behaviour of the density〈δc〉 by equating the right-hand side to zero and solving the
quadratic equation inδc. This crude approximation has proven to give accurate results in the
homogeneous one- and two-species reactions. In addition, the same results are obtained by
assuming (on physical grounds and by examining its differential equation) that the propagator
behaves like

G(x,x′, t, t ′) ' exp[−σ(x1, t)(t − t ′)]G0(x− x′, t − t ′) (94)

whent ′ → t (note that in the homogeneous case, this limit gave the asymptotic time behaviour).
Finally, one finds

〈c〉 = ĉ(x1, t) +
λ

4σ(x1, t)
3 {µ2 + σ(x1, t)

2 − λ2n2
0[erf(ξ)]2}〈δχ2〉. (95)

As in the homogeneous case, the mean-field asymptotic solution is approached with a power
law. From the last equation one immediately obtains that the width of the front is governed
by its mean-field exponentα = 1

2. This result is easily explained: the spreading of the front
is given by the diffusion of theC particles. Moreover, once the backward reaction is allowed,
it has been shown that theC particles will always diffuse with a non-vanishing effective
diffusion constant (even whenDc = 0). Hence the width of the front should grow like the
square root of time, independently on the fluctuations which are governing only the approach
to the equilibrium, and not the spreading of theC particles.

5. Discussion and concluding remarks

As we mentioned in the beginning, our model allows for multiple occupancy of each site and
contains only single-site reactions, a property which has considerably simplified our analysis
(leading in particular to the simple form of the Langevin equations). It is thus natural to
question about the universality of our results.

To answer this question, let us consider the following two Langevin equations

(∂t −D∇)9 = ζ (96)

(∂t −D∇)8 =
∑
i,j

i+j>1

ai,j9
i8j (97)

with 〈ζ 〉 = 0 and

〈ζ(x, t)ζ(x′, t ′)〉 = 0(t)δ(d)(x− x′)δ(t − t ′) (98)

(homogeneous case). By writing these two equations, we have implicitely assumed that initially
9(x, 0) = 0 and that limt→∞〈8〉 = 0 (otherwise a constant terma00 6= 0 should be added).
From equation (96), one immediately obtains in the long time limit

〈92〉 = (8πD)−d/2
∫ t

0
dt ′ (t − t ′)−d/20(t ′) (99)

(to cure the divergence whent ′ → t , the integrand should be multiplied by a cut-off function),
leading to the following long time behaviour for〈8〉

〈8〉 = − 1

a3
01

(a2
01a20− a01a11a10 + a02a

2
10)(8πD)

−d/2
∫ t

0
dt ′ (t − t ′)−d/20(t ′). (100)

If a01 6= 0, the leading behaviour is given by
∫ t

0 dt ′ (t − t ′)−d/20(t ′) (as long asa2
01a20 −

a01a11a10 + a02a
2
10 6= 0). If

∫∞
0 dt ′ 0(t ′) is finite (this implies in particular that the noise dies
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out at equilibrium), one recovers thet−d/2 power law. This shows us that in general the power
law does not depend on the structure of the equation for8, but only on the presence of9, i.e.
of a diffusive conserved mode in the model. The conditiona01 6= 0 (herea01 plays the role
of σAA or σAB) implies the presence of a non-vanishing mass in the field theory for the field
8. This is responsible for the presence of an exponential decay in time of the88 propagator,
which, in turn, plays a central role in the large time behaviour.

Equation (100) shows that the amplitude depends only on the most relevant operators (the
value of the coefficientai,j , with 1 6 i + j 6 2). In particular, a model with an exclusion
principle on each lattice site can be handled in the same way. Whereas the exclusion condition
will give rise to new contributions for the noise correlation and for various operators, one can
reasonably expect on physical grounds that the conserved quantity will behave diffusively,
leading to thet−d/2 power law. However, the equation for the evolution of8will be modified,
leading to new expressions for the steady-state densities (which are again simply obtained
by solving the corresponding mean-field equation) and the amplitude. Note that the exact
expression of the equilibrium densities depends explicitly on the complete equation for (the
unshifted version of)8, but as the noise dies out at equilibrium, it is still given by a mean-field
equation.

The addition of a new diffusive conserved mode (like in the case of theA + B 
 C

reaction) clearly does not alter the power law, but the amplitude. A generalization of our
analysis is also straightforward for the reversible aggregationAm +An 
 Am+n, for which the
total number of monomersA is conserved (see [25]). However, it is not possible to extend our
results for the reversible coagulation processA +A
 A, for which no such conservation law
occurs. In fact this last reaction can be described by an action equivalent to the one obtained
for directed percolation, in the active phase. One expects thus the upper critical dimension to
be four.
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